

Influence of Heterogeneities on Chemical & Microbial Transport Predictions: Laboratory and Field Studies

Jim Szecsody
Pacific Northwest National Laboratory
Richland, Washington, USA

Coupled Microbial Degradation/Transport

Ellyn Murphy Tom Resch, Jerry Phillips (exp.) Jim Szecsody, Brian Wood, Tim Ginn (modeling)

Question:

Can we predict the dynamics of microbial sorption coupled with biodegradation? (degrading -> desorb)

- microbial distributions become more homogeneous with electron donor/acceptor injections?
- can heterogeneities be characterized?

Methods:

- batch, 1-D, Heterogeneous 2-D laboratory experiments
- reactive transport modeling

Coupled Processes

- if not degrading, Kd = 100 (microbial isolate CN32)
- if degrading, Kd decreases with microbial activity:

lactate + oxygen -> acetate
lactate + nitrate -> acetate + nitrite

$$a1 \quad \frac{d \text{ oxygen}}{dt} = -\frac{mu1}{y1} \cdot m \cdot f1 \cdot \left[\frac{d}{kd1+d} \right] \cdot \left[\frac{a1}{a1+ka1} \right] - b1 \cdot a1$$

$$a2 \quad \frac{d \text{ nitrate}}{dt} = -\frac{mu2}{y2} \cdot m \cdot f2 \cdot \left[\frac{d}{kd2+d} \right] \cdot \left[\frac{a2}{a2+ka2} \right]$$

$$d \quad \frac{d \text{ lactate}}{dt} = -\frac{mu1}{y1} \cdot m \cdot \left[\frac{d}{kd1+d} \right] \cdot \left[\frac{a1}{a1+ka1} \right] - \frac{mu2}{y2} \cdot m \cdot \left[\frac{d}{kd2+d} \right] \cdot \left[\frac{a2}{a2+ka2} \right] \qquad \text{microbial sorb, desorb:}$$

$$mm \quad \frac{d \text{ mobmicrobes}}{dt} = mu1 \cdot m \cdot \left[\frac{d}{kd1+d} \right] \cdot \left[\frac{a1}{a1+ka1} \right] + mu2 \cdot m \cdot \left[\frac{d}{kd2+d} \right] \cdot \left[\frac{a2}{a2+ka2} \right] - k_f F m + k_b \text{ im}$$

$$im \quad \frac{d \text{ imobmicrobes}}{dt} = mu1 \cdot im \cdot \left[\frac{d}{kd1+d} \right] \cdot \left[\frac{a1}{a1+ka1} \right] + mu2 \cdot im \cdot \left[\frac{d}{kd2+d} \right] \cdot \left[\frac{a2}{a2+ka2} \right] + k_f F m - k_b \text{ im}$$

$$F = \left[1 - \left[\frac{d}{kd1+d} \right] \cdot \left[\frac{a1}{a1+ka1} \right] \right] \left[1 - \left[\frac{d}{kd2+d} \right] \cdot \left[\frac{a2}{a2+ka2} \right] \right]$$

Microbial Activity in 1-D System

 biodegradation generally predicted (2 acceptors)

 microbial downgradient movement with growth predicted

 immobile CN32 data: need more discrete sampling

2-D Experimental/Modeling System

Flow Cell Packing: CN-32 microbes only in (35) low-K lenses (16.75% of total volume):

Flow Field

2-D Model: Testing Coupling Process

Constant Microbial Sorption (Kd = 100): inclusions 39% growth, high-K media, 15x

Coupled Sorption/Deg. (Kd = 100): inclusions 21% growth, high-K media, 9x

Coupled Process Modeling: Characteristic Growth Patterns

• Continuous downgradient "streaks" (low conc., high velocity injection)

• Discontinuous downgradient "zones" (high conc., low vel. pulse)

• Far field advection (from high conc., continuous injection

30% of biomass advected out of system

Coupled Process Modeling: Immobile Microbial Population Simulation

Predicting Coupled Microbial Degradation/Transport

- desorption coupled to degradation enables far field transport of microbes
- differing injection strategies produce differing pattern:
 - excess nutrients and flow: far field migration
 - fast flow, low conc.: continuous microbial deposition
 - short, high conc. pulse: discontinuous microbial deposition (i.e., nutrient pulse relative to inclusion size and flux)
- may be able to characterize heterogeneities to some extent by differing injection strategies

(coupled process quantified in idealized laboratory-scale system with intense sampling strategy and simulations)

Heterogeneity and Field-Scale Permeable Barriers

John Fruchter, Vince Vermeul (Pls), Chris Murray, Yulong Xie (geostatistics)
Mark Rockhold, Mark Williams (modeling), Jim Szecsody (geochemistry)

Questions:

What is the influence on a chemical redox-reactive subsurface barrier by:

- scale of heterogeneity
- anisotropy

Methods:

- field scale characterization, geostatistics, simulations
- comparison with field scale injection data, long-term barrier performance

Reactive Redox Barrier Concept

No barrier; uncontrolled contaminant movement

ISRM wells in place, dithionite injection in center wells (1 year)

ISRM barrier complete (3 years); longevity ~ 20 years

ISRM passive reactive barrier in 10 years

barrier is slowly oxidized over decades

Iron Phase Changes During Reduction

	Fe ^{II}		Fe ^{III}	
sediment	Fe ^{II} CO ₃	ads. Fe ^{II}	am-Fe ^{III}	crysFe ^{III}
untreated	18	0.2	86	140
reduced	36	155	38	106
red./oxidiz	ed26	0.0	75	150
				(all [mal Fa/a)

(all □mol Fe/g)

• 80% of Fe^{II} reduced is adsorbed Fe^{II}, <20% siderite all adsorbed Fe^{II} and some siderite is oxidized by O_2

Scale Bench

Intermediate Scale

Scale of Research

Objective

- Identify/quantify geochemical reactions
- Interactions of multiple reactions
- Reactivity in flowing columns
- Reactive Transport with Particle-Scale Heterogeneity

Experiment

 Reactive Transport with Chemical Heterogeneities

- Reaction rates in radial flow field
- Quasi-radial (15 m)
- Aquifer Clogging, Clay movement, Test field-scale operations

Field Scale

- Reactivity/Conceptualization in natural system, dense fluid injection
- Application in Contaminated Aquifer

Chromium in Groundwater – ISRM Barrier Hanford 100D Area – September, 2002

ISRM Hanford 100D Area Barrier Issue

Issue:

Chromate breakthrough after 6 years in one location

Potential Causes:

- air rotary drilling prematurely causing barrier oxidation
- high-K, low-Fe zone extends through barrier; natural or air-injection caused (i.e., large scale heterogeneity)

Path forward:

 re-reduce, monitor barrier for years

(unknown effect of drilling)

(insufficient heterogeneity characterization)

Frontier Chrome Site

Objective: prevent offsite migration of chromate

Issues: • layers: A1 high chrome/low-K,

A2: low chrome/high-K

spatial heterogeneity

Heterogeneity Approach

Characterize Heterogeneity: borehole flowmeters - relative K

Synthesize 3-D K_{sat} /Fe distribution: assume correlation area

Lateral (feet)

Simulation Approach

Average K_{sat} field from 100 realizations Single well (2-D radial) simulation to address injections

3-D simulation to address barrier longevity

Figure 2 ISRM Barrier Installation Plan map

ISRM Design Simulation for Frontier Hard Chrome Site, Vancouver, WA.

Case: Fixed5, modified rates and conc. (PP016): 10 gpm, 0.1 molar dithionite, 0-21 hr injection into unit A1 (layered, Kh=100*Kv), and 30 gpm, 0.1 molar dithionite, 6-21 hr injection into unit A2 (layered, Kh=100*Kv).

Anisotropy

- pump test data indicates Kh/Kv = 100+ (large scale data)
- dense liquid injection data indicates Kh/Kv = 10

Plume Sinking and Heterogeneity

- inject a lower concentration to avoid density/plume sinking
- injection data indicates more sinking than simulations (heterogeneities not as continuous?)

In Situ Reactive Barrier Design

- lateral extent of high-K/low-Fe layers could affect long-term barrier performance; open question
- multi-well anisotropy data insufficient for prediction of single-well dense plume injection (scale of data)
- even with 14 wells within 120 ft, insufficient heterogeneity characterization to address lateral extent of high-K layers

(coupled processes not quantified at field scale, even with intense sampling strategy and simulations)